The Gram-Charlier A Series based Extended Rule-of-Thumb for Bandwidth Selection in Univariate and Multivariate Kernel Density Estimations

نویسنده

  • Dharmani Bhaveshkumar C
چکیده

The article derives a novel Gram-Charlier A (GCA) Series based Extended Rule-of-Thumb (ExROT) for bandwidth selection in Kernel Density Estimation (KDE). There are existing various bandwidth selection rules achieving minimization of the Asymptotic Mean Integrated Square Error (AMISE) between the estimated probability density function (PDF) and the actual PDF. The rules differ in a way to estimate the integration of the squared second order derivative of an unknown PDF (f(·)), identified as the roughness R(f ′′(·)). The simplest Rule-of-Thumb (ROT) estimates the R(f ′′(·)) with an assumption that the density being estimated is Gaussian. Intuitively, better estimation of R(f ′′(·)) and consequently better bandwidth selection rules can be derived, if the unknown PDF is approximated through an infinite series expansion based on a more generalized density assumption. As a demonstration and verification to this concept, the ExROT derived in the article uses an extended assumption that the density being estimated is near Gaussian. This helps use of the GCA expansion as an approximation to the unknown near Gaussian PDF. The ExROT for univariate KDE is extended to that for multivariate KDE. The required multivariate AMISE criteria is re-derived using elementary calculus of several variables, instead of Tensor calculus. The derivation uses the Kronecker product and the vector differential operator to achieve the AMISE expression in vector notations. There is also derived ExROT for kernel based density derivative estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrimination of time series based on kernel method

Classical methods in discrimination such as linear and quadratic do not have good efficiency in the case of nongaussian or nonlinear time series data. In nonparametric kernel discrimination in which the kernel estimators of likelihood functions are used instead of their real values has been shown to have good performance. The misclassification rate of kernel discrimination is usually less than ...

متن کامل

A Bayesian Approach to Bandwidth Selection for Multivariate Kernel Regression with an Application to State- Price Density Estimation

Multivariate kernel regression is an important tool for investigating the relationship between a response and a set of explanatory variables. It is generally accepted that the performance of a kernel regression estimator largely depends on the choice of bandwidth rather than the kernel function. This nonparametric technique has been employed in a number of empirical studies including the state-...

متن کامل

A Bayesian approach to bandwidth selection for multivariate kernel density estimation

Kernel density estimation for multivariate data is an important technique that has a wide range of applications. However, it has received significantly less attention than its univariate counterpart. The lower level of interest in multivariate kernel density estimation is mainly due to the increased difficulty in deriving an optimal data-driven bandwidth as the dimension of the data increases. ...

متن کامل

Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC

Kernel density estimation for multivariate data is an important technique that has a wide range of applications in econometrics and finance. However, it has received significantly less attention than its univariate counterpart. The lower level of interest in multivariate kernel density estimation is mainly due to the increased difficulty in deriving an optimal datadriven bandwidth as the dimens...

متن کامل

How bandwidth selection algorithms impact exploratory data analysis using kernel density estimation.

Exploratory data analysis (EDA) can reveal important features of underlying distributions, and these features often have an impact on inferences and conclusions drawn from data. Graphical analysis is central to EDA, and graphical representations of distributions often benefit from smoothing. A viable method of estimating and graphing the underlying density in EDA is kernel density estimation (K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1504.00781  شماره 

صفحات  -

تاریخ انتشار 2015